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Abstract
A core challenge in global change biology is to predict how species will respond to fu-
ture environmental change and to manage these responses. To make such predictions 
and management actions robust to novel futures, we need to accurately character-
ize how organisms experience their environments and the biological mechanisms by 
which they respond. All organisms are thermodynamically connected to their environ-
ments through the exchange of heat and water at fine spatial and temporal scales and 
this exchange can be captured with biophysical models. Although mechanistic models 
based on biophysical ecology have a long history of development and application, 
their use in global change biology remains limited despite their enormous promise and 
increasingly accessible software. We contend that greater understanding and training 
in the theory and methods of biophysical ecology is vital to expand their application. 
Our review shows how biophysical models can be implemented to understand and 
predict climate change impacts on species' behavior, phenology, survival, distribution, 
and abundance. It also illustrates the types of outputs that can be generated, and 
the data inputs required for different implementations. Examples range from sim-
ple calculations of body temperature at a particular site and time, to more complex 
analyses of species' distribution limits based on projected energy and water balances, 
accounting for behavior and phenology. We outline challenges that currently limit 
the widespread application of biophysical models relating to data availability, training, 
and the lack of common software ecosystems. We also discuss progress and future 
developments that could allow these models to be applied to many species across 
large spatial extents and timeframes. Finally, we highlight how biophysical models are 
uniquely suited to solve global change biology problems that involve predicting and 
interpreting responses to environmental variability and extremes, multiple or shifting 
constraints, and novel abiotic or biotic environments.
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1  |  INTRODUC TION

Accurate forecasts of how environmental change will affect spe-
cies are vital if we are to effectively manage biodiversity now 
and in the future. Yet predicting how organisms respond to en-
vironmental change is complex because such responses are gen-
erally nonlinear, often have thresholds, and may change with 
novel conditions (Beissinger & Riddell, 2021; Huey et al., 2012). 
Thus, there is growing recognition that we need to explicitly in-
corporate mechanisms into models of species' responses to en-
vironmental change if we are to improve predictions and better 
manage outcomes (Helmuth et al., 2005; Keith et al., 2008; Urban 
et al., 2016).

Exactly what mechanisms to incorporate is a daunting ques-
tion as they could relate to most topics in ecology, evolution, and 
physiology, such as life history, population dynamics, dispersal, 
and biotic interactions (Briscoe et al., 2019; Ehrlén & Morris, 2015; 
Thuiller et al., 2013). A useful starting point is to model fundamen-
tal constraints on fitness such as survival, development, growth, 
and reproduction. Models based on the principles of biophysical 
ecology (hereafter biophysical models) capture the balances of heat, 
water, and other aspects of energy and mass exchange between 

organisms and their microclimatic environment and translate 
these into metrics of performance (Figure 1), offering a conceptu-
ally simple way to capture the fundamental physical and chemical 
constraints relevant to all living things (Gates, 1980). Their focus 
on energy and water— the currencies of life— makes them a judi-
cious starting point in analyses of how environmental changes— 
particularly in climate— will affect organisms. Biophysical models 
also often form the basis of “mechanistic niche models” (also re-
ferred to as “ecophysiological” or “mechanistic” models), which 
can incorporate additional processes (e.g., metabolic theory, de-
mographic, evolutionary).

The principles of biophysical ecology have a long history of 
application to the study of adaptations of organisms (Porter & 
Gates, 1969) and are also incorporated into larger scale models of 
climate, hydrology and vegetation models (Maclean et al., 2015; 
Michaletz et al., 2016). Despite their enormous promise, biophysical 
models are not yet a routine practice in studies seeking to predict 
species responses to global change. Thirty years ago, O'Connor and 
Spotila (1992) recognized the slow uptake of biophysical methods in 
ecology. These models have since become more sophisticated and 
accessible, and the need for their predictions and inferences has 
only become greater.

for the Promotion of Science, Grant/
Award Number: JP21H03625; University 
of Melbourne

K E Y W O R D S
biophysical ecology, climate change, ecophysiology, mechanistic niche model, microclimate, 
species distribution model

F I G U R E  1  Biophysical models are powerful tools for capturing how an organism's environment affects its physiological condition. 
(a) Thermal image showing the variation in surface temperatures on a sand dune at a site in arid Australia. (b) Hourly temperatures in 
microclimates available to feral cats (surface temperatures in the sun, shade, and down a burrow) at the site, as modeled by a microclimate 
model using the principles of biophysics (black) and measured using temperature loggers (red). (c) Predicted daily water costs of feral cats 
(image: Hugh McGregor) using each microclimate (red = surface [sun], orange = surface [shade], gray = burrow). Costs were estimated using 
a biophysical model parameterized using data on feral cat functional traits (Briscoe, McGregor, et al., 2022).
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    |  3BRISCOE et al.

Here, we first review and outline biophysical models, focusing 
on how they differ from statistical models, the different ways they 
can be implemented, and the types of questions they can be used to 
answer. We draw on our own experience, as well as a literature re-
view of how these models have been applied to animals (Supporting 
Information; Briscoe, Morris, et al., 2022). We focus predominantly 
on terrestrial animal studies, but the methods are relevant to 
plants (Campbell & Norman, 1998; Muir, 2019; Wright et al., 2017), 
aquatic organisms (marine: Sarà et al., 2011; freshwater: Kearney, 
Porter, et al., 2009; Martin et al., 2017), humans (Campbell- Staton 
et al., 2021) as well as communities (Pincebourde & Casas, 2019) and 
ecosystem productivity (Cramer et al., 2001). Second, we highlight 
limitations that hamper broader use of biophysical models, such as 
training, data, and disciplinary divisions, and discuss the progress 
that has been made and future opportunities.

2  |  MECHANISTIC VERSUS STATISTIC AL 
MODEL S

Most models used in ecology are statistical or “phenomeno-
logical” in nature (Figure 2a), directly describing the observed 

patterns or relationships between predictors and phenomena 
of interest (Connolly et al., 2017). In contrast, mechanistic mod-
els predict a phenomenon of interest based explicitly on one or 
more underlying processes. While acknowledging that mecha-
nistic and statistical approaches described here represent either 
end of a continuum (Dormann et al., 2012), an appreciation of 
their differences is a useful starting point for understanding bio-
physical models and their potential contribution to global change 
biology.

Statistical approaches start with the data. When fitting these 
models, the strategy is to find relationships between the phe-
nomena of interest and predictor variables, but with underlying 
processes left implicit so that the data lead the dance (Hilborn & 
Mangel, 1997). Thus, major challenges lie in the choice of mod-
els and predictors, and there is a strong emphasis on uncertainty 
and error propagation as well as model– data fusion and feedback 
(Dietze, 2017). The flexibility of statistical approaches means 
that they can be applied to a broad range of problems without 
explicit knowledge of the constraints on the system (Dormann 
et al., 2012).

In contrast, mechanistic approaches start by assuming that 
a particular set of processes are influencing the phenomena of 

F I G U R E  2  Overview of components and decisions made when building (a) statistical versus (b) mechanistic (biophysical) models to 
predict a phenomenon of interest (here: organismal occurrence, μ). Statistical models use relevant environmental covariates (x: here relating 
to temperature) to predict observations of that phenomenon (y). When fitting the model, key decisions include the assumed probability 
distribution of the data (here a binomial distribution), covariates to include, and the shape of the modeled response. In contrast, mechanistic 
models describe the phenomenon of interest by simulating underlying processes (here: overheating and reaching a lethal body temperature). 
First, the model calculates the body temperature of the organism given its surrounding microclimate (via radiation, convection, conduction, 
metabolic heat generation, and evaporation) and its traits (e.g., solar absorptivity of feathers, surface areas, basal metabolic rate, behavioral 
and physiological regulation options, and parameters). Next, the model can predict the risk of overheating by comparing the calculated body 
temperatures to the lethal body temperature of the organism. This can then be used to infer occurrence. Key decisions typically relate to 
simplifying assumptions. Here, the bird is assumed to approximate an ellipsoid, to be in the sun (full solar radiation), and to be on the ground.
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4  |    BRISCOE et al.

interest. In the case of biophysical models, the strategy is to start 
with fundamental processes relating to energy and mass exchange 
between an individual (the system) and its surroundings (the envi-
ronment) and use the outcomes as the basis for inferring survival, 
growth, development, and reproduction (Kearney & Porter, 2009). 
These outputs can be integrated with other types of models, for 
example, those focused on capturing demography or movement 
(Buckley et al., 2010; Sears et al., 2016). In mechanistic approaches, 
the underlying theory of the modeled processes leads the dance 
and tightly constrains the choice of models and their associated 
parameters and predictor variables. The major challenges lie in bal-
ancing realism versus abstraction of the models to be used and in 
obtaining the parameters and predictor variables. This balancing 
of realism and abstraction in biophysical models requires a deep 
understanding of both the organismal natural history and the un-
derlying physical theory, which is an increasingly rare outcome of 
biological training in ecology (Bialek & Botstein, 2004; Hampton & 
Wheeler, 2012).

3  |  ADVANTAGES OF BIOPHYSIC AL 
MODEL S FOR PREDIC TING , AT TRIBUTING , 
AND UNDERSTANDING IMPAC TS OF 
CLIMATE CHANGE

To date, studies of how global change will affect species have pre-
dominantly employed statistical approaches, but there is a growing 
demand for mechanistic approaches that can generate more reliable 
predictions under novel future conditions and identify key driv-
ers of change and management levers (Buckley et al., 2010; Urban 
et al., 2016). Our literature review (see Supporting Information) 
identified 211 papers that have applied biophysical models to ani-
mals, the majority of these (64%) since 2010 (Figure 3a). Biophysical 
modeling applications were initially biased to ectotherms (mostly 

terrestrial), but are now also used for endotherms, with their applica-
tion to both groups increasing. Overall, 37% of studies (a total of 78 
papers) modeled species responses to past or future climate change 
or discussed model applications in the context of climate change; this 
rises to ~50% when only studies from 2010 onward are considered. 
Despite the limited applications of biophysical models to climate 
change studies so far, several important insights are already emerg-
ing and give a sense of what we could learn if their application was 
broadened.

The great power of biophysical models is that they can be 
used to infer what will happen under any combination of func-
tional traits and environmental conditions because they are based 
on universal physical principles. Thus, they could, in theory, pre-
dict the body temperature of an organism on another planet if 
we knew the environment there. As a result, biophysical models 
can make confident predictions of the consequences of novel 
climates for species given their functional biophysical traits. As 
organisms will increasingly be exposed to novel conditions under 
climate change (e.g., more extreme conditions, new combinations 
of climate) (Davy et al., 2017), the predictive ability of statistical 
models may erode because no observations under these condi-
tions (Box 1) are available to parameterize such models (Buckley 
et al., 2010; Sinclair et al., 2010). In contrast, biophysical models 
inherently translate environmental conditions through time into 
currencies directly relevant to the fitness of the organism and 
allow new processes not yet captured in observations to become 
limiting as conditions change.

The fact that biophysical models can capture limiting factors 
makes them ideal tools for attributing observed shifts in distribution, 
phenology, population dynamics, or behavior of a species to climate 
change (Kearney, Briscoe, et al., 2010; Riddell et al., 2019). They can 
also reveal management levers (e.g., shade manipulation, water or 
food provisioning, translocations) for adapting to climate change im-
pacts (Mitchell et al., 2008, 2013).

F I G U R E  3  (a) Number of studies per year that applied biophysical models to animals, showing type of taxa (ectotherms/endotherms), 
and whether the study considered climate change responses. (b) Number of studies focused on lizard and snakes identified using 
keywords related to different types of functional traits: thermal physiology, hydric physiology, morphology, metabolism, or behavioral 
thermoregulation. The bottom (left) histogram indicates the total number of studies identified in each search, while the top panels display 
the number of studies in each set of terms, as indicated by the filled circles below the x- axis (only the top 15 sets of terms are shown, no 
papers were identified by all five searches).
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    |  5BRISCOE et al.

4   |   B I O P H Y S I C A L  M O D E L S —  A  B R I E F 
O V E R V I E W

At the core of biophysical models are equations for the exchange 
of energy and mass between an organism and its environment 
(Figure 4). These models consider the organism as a thermody-
namic system, where incoming energy must equal outgoing energy 

plus any energy stored (see books by Campbell & Norman, 1998; 
Gates, 1980 or O'Connor & Spotila, 1992 for a shorter overview). A 
useful analogy is the balancing of a bank account, where one must 
account for various streams of income and types of expenses. For 
example, a bird (Figure 2) or lizard (Figure 5) on the open ground will 
gain energy from the environment as heat from direct, scattered, 
and reflected solar radiation, as well as infrared radiation from the 
sky, ground, and vegetation. They will produce metabolic heat, and 
they will also lose heat through infrared radiation and evaporation 
of water from their surface and via respiration. Heat exchange via 
contact with solid surfaces such as the ground (i.e., conduction) or 
immersion in air or fluid (i.e., convection) can be gains or losses de-
pending on the temperature gradient between the organism and its 
surroundings. All these factors eventually determine the thermal 
energy of the organism's body, manifested as its body temperature.

In biophysical models, these heat exchange processes account 
for both the environment and the traits of the organisms (Barlett & 
Gates, 1967). For example, the solar radiation absorbed by the lizard 
depends on the incoming solar radiation (perhaps mediated by shade 
from plants or terrain), the surface areas exposed, and the absorp-
tivity of these surfaces. Convective heat exchange depends on the 
temperature difference between the lizard's surface and the air, the 
surface area exposed to the air, the lizard's size and shape, and the 
properties of the air (e.g., temperature, density, velocity). The same 
principles apply to heat exchange for any other types of organism 
though the dominating processes and the necessary functional traits 
to parameterize the model may vary. The heat balance equation in 
Figure 4 can be solved for steady- state body temperature or for 
metabolic heat production and provides estimates of evaporative 
heat loss of an organism in a particular environment. These outputs 
are a powerful starting point for making inferences about how the 
environment constrains the species' distribution, behavior, and phe-
nology (Figure 5; Table 1).

In addition to heat exchange, organisms exchange energy 
through work (e.g., movement) and mass (food). To determine 
whether the animal can grow and reproduce, we can extend our 
analysis to consider its entire energy and water budget using cou-
pled energy and mass balance equations that capture the exchange 
of food, water, respiratory gases, and metabolic waste (Porter & 
Tracy, 1983; Figure 4). Energy available for metabolism, growth, 
and reproduction can be calculated using information on the energy 
density and amount of food ingested and the proportion of this lost 
in feces or to microflora (Buckley, 2008; Levy et al., 2017). The dy-
namics of metabolic processes can be calculated with metabolic the-
ory (Kooijman, 2010), a large topic that is beyond the scope of this 
review (but see Kearney et al., 2013; Kearney, Jusup, et al., 2021; 
Kearney, Simpson, et al., 2010). The characteristics of food ingested 
also determine water gained from food and lost via feces, while the 
water balance is influenced by metabolic water and nitrogenous 
waste produced via metabolism, as well as that lost via cutaneous 
and respiratory evaporation.

The coupling of the energy and mass balance (Figure 4) reduces 
the degrees of freedom of the overall problem and highlights how the 

BOX 1 Formal distinctions between statistical and 
mechanistic models

A statistical model assumes that a dataset generated 
by the phenomenon of interest contains realizations of a 
random variable drawn from a particular distribution. This 
distribution is characterized by its parameters, such as a 
mean μ and a variance σ. Subsequently, distribution pa-
rameters are modeled as functions of one or more envi-
ronmental predictor variables x (boldface means a vector), 
for example,

in the case of generalized linear models, where g is the “link 
function.” The model parameters β— the effect of each vari-
able x on the phenomenon of interest μ— can be estimated 
by finding those values that maximize the likelihood of ob-
serving the dataset y, where the likelihood function is given 
by the initially assumed distribution. Bayesian estimation, 
by comparison, blends the prior, expert knowledge about 
parameters with the likelihood function in order to estimate 
the most likely value β given the dataset y.
In contrast, mechanistic models take the form

where a vector of system state variables x (e.g., an individual's 
body temperature and water balance) is predicted through 
time t as a function of a vector of exogenous forcings u (e.g., 
radiation, wind speed, humidity, air temperature), where β is 
a vector of model parameters (e.g., surface area, body insu-
lation, solar absorptivity). The vector function f is a collec-
tion of physical laws in functional form, one for each state 
variable in x (e.g., the processes of convective, radiative, and 
evaporative heat transfer). Many biophysical parameters can 
be measured directly but the parameter set β is, in general, 
estimable via the maximum likelihood method or Bayesian 
estimation applied to the measurements y, after establishing 
a functional relationship between y and the state variables 
x, y = F(x), and assuming a probability distribution for mea-
surement errors.

�i = g−1
(

�1x
1

i
+ ⋅ ⋅ ⋅ + �nx

n
i

)

,

dx

dt
= f(x, t,u; �),
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6  |    BRISCOE et al.

organism is an interconnected system with inherent feedbacks and 
trade- offs. For example, a lizard foraging on the ground over sum-
mer may be subject to high radiant heat loads, requiring high rates 
of evaporative water loss if it is to avoid hyperthermia (Loughran & 
Wolf, 2020). The lizard can avoid these water costs by ceasing activ-
ity and sheltering in shade or in a burrow, but this simultaneously re-
duces food intake (Buckley, 2008; Kearney, Shine, et al., 2009; Levy 
et al., 2017). The vulnerability of the lizard to reduced food intake or 
enhanced water loss will depend on its recent history of feeding and 
heat stress, with consequences for its future growth and reproduc-
tion, emphasizing the importance of the temporal context.

The focus on individuals in biophysical modeling allows for a 
strong connection between theory and observation and the direct 
observation and measurement of model parameters and predictions 
(e.g., of body temperatures, activity, microhabitat use, energy and 
water turnover) (Briscoe, McGregor, et al., 2022; Kearney et al., 2018; 
Mathewson et al., 2020). An expedient strategy can be to start with 
simple biophysical models that broadly bound the problem and then 
add complexity as required to adequately account for observations 
(e.g., Porter et al., 1973). Biophysical models also generate predic-
tions and explanations that can be tested at different scales and lev-
els of organization. For example, models can be used to predict the 
“risky” microclimates in the habitat (Pincebourde et al., 2007), levels 
of individual activity at a particular site at a particular time (Levy 
et al., 2012), how foraging activity determines reproductive output 
across sites and years (Adolph & Porter, 1993; Kearney, 2012), and 
how this in turn drives population dynamics and distribution limits 
(Buckley, 2008). By varying model parameters in sensitivity analy-
ses, one can generate hypotheses about the strength of selection on 

trait values (Kearney, Porter, et al., 2009) and predict clines (Sears & 
Angilletta, 2004).

An important consideration when using biophysical models for 
global change biology is whether relative outputs (e.g., indices) are 
sufficient, or whether more accurate estimates of the organism's 
state are required (O'Connor & Spotila, 1992). While relative metrics 
are sufficient for some applications (e.g., identifying regions likely to 
experience the largest increases in cooling costs or body tempera-
tures), accuracy is often necessary when identifying hard limits on 
where the species can occur— for example, sites where individuals 
would exceed lethal body temperatures or be unable to meet their 
energy or water requirements. When lack of data currently prevents 
accurate estimates, relative metrics can grant insight into the key 
limiting processes and— coupled with sensitivity analyses— guide fur-
ther data collection.

One of the challenges in biophysical models is to accurately 
specify the environment experienced by the organism through de-
tailed measurements or microclimate models (Figure 1). Biophysical 
models demand accurate estimates of specific aspects of the micro-
climates experienced by organisms that directly influence the heat 
balance (Pincebourde & Woods, 2020) (e.g., wind speed and solar 
radiation in addition to humidity and air temperature, Figure 2b) 
at scales relevant to the organism— usually meters or finer and 
hours (Potter et al., 2013). This information can be measured di-
rectly [e.g., with portable weather stations (Briscoe et al., 2014), 
thermal cameras (Choi et al., 2019), and temperature loggers 
(Lembrechts et al., 2020; Maclean et al., 2021)] or translated from 
gridded or weather station data using microclimate models (Figure 1)  
(Kearney & Porter, 2017; Maclean et al., 2019; Porter et al., 1973). 

F I G U R E  4  The coupled equations 
for the exchange of energy and mass 
between an organism and its environment 
via heat (red), respiration (grey), feeding 
(brown) and water (blue). At the core of 
biophysical models is the heat budget 
(diagonal) equation that calculates the 
energy exchanged through conduction, 
convection, radiation, evaporation, and 
metabolism. It is intersected by the 
mass balance equations for allocation of 
energy from food (horizontal equation) 
and respiration (vertical equation) at the 
metabolism term, and for water at the 
evaporation term.
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    |  7BRISCOE et al.

A further complication is that organisms can modify or manipulate 
their microclimate (Pincebourde & Casas, 2019).

A related challenge lies in capturing and simulating how animals 
use the microclimates available to them. Microclimates can vary 
across an organism's habitat by as much as 20– 30°C depending 
on topographical and vegetational features (Bakken, 1989; Sears 
et al., 2011), including at small spatial scales such as a single leaf 
(Saudreau et al., 2017). Studies often characterize the microhabitats 
used by the species (full sun, full shade, burrow; Figure 1) and assume 

that animals can select between these options to avoid lethal con-
ditions or remain as close as possible to preferred temperatures at 
any point in space (e.g., Buckley et al., 2010; Kearney et al., 2018). 
However, depending on the spatial distribution of these tempera-
tures, animals may or may not have access to suitable temperatures 
(Sears & Angilletta, 2015). The issue of accessibility is especially 
important to small animals whose body temperatures change rap-
idly in response to local thermal microenvironments (Pincebourde 
et al., 2021; Sears & Angilletta, 2015; Stevenson, 1985a). Biophysical 

F I G U R E  5  Biophysical models of a lizard that vary in modeled outputs, mechanisms, and complexity (a– d). (a- b) The heat exchange 
equation (red, see Figure 4) is used to predict the body temperature of adult (a). or adult and egg, (b) life stages and combined with 
thermal performance curves to infer distribution limits. (c) Predictions of potential activity hours across the year are first tested against 
field observations and then used to infer shifts in phenology under climate change. (d) The entire energy and water budget of the lizard is 
calculated using the energy and mass balance equations (Figure 4) and foraging activity is constrained by predicted body temperatures and 
desiccation risk. Discretionary energy is calculated and combined with its relation to number of offspring to infer potential reproductive 
output and predict population growth through time.
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models that integrate movement and thermoregulation are a prom-
ising approach to understand how spatial heterogeneity can im-
pact activity, water balance, and energetics of organisms (Malishev 
et al., 2018; Sears et al., 2016, 2019; Woods et al., 2015).

5  |  APPLIC ATION OF BIOPHYSIC AL 
MODEL S TO DIFFERENT T YPES OF 
ORGANISMS

5.1  |  Ectotherms

Most simply, biophysical models can be used to estimate body tem-
perature of a single life stage of an ectotherm in a particular micro-
climate (Figure 5a), such as lizard embryos laid at a given depth in 
the soil and under a specified level of shade (Levy et al., 2015). To 
identify constraints on species, body temperature predictions from 
biophysical models are typically combined with data on the temper-
ature dependence of development, sex, activity, growth, survival, 
or reproduction (Buckley, 2008; Mitchell et al., 2008). For example, 
Levy et al. (2015) combined predictions of lizard embryo tempera-
tures through time at sites across the United States with laboratory 
data on lethal temperatures and the thermal dependence of devel-
opment to determine whether the species could survive and develop 
at a particular site. Such analyses can be very useful for identify-
ing areas and conditions where the species cannot persist. But it is 
often necessary to account for multiple life stages and for behavioral 
thermoregulation (Figure 5b)— particularly when the organism's en-
vironment is highly heterogeneous— to gain a more complete picture 
of the constraints on a species' fundamental niche. Additionally, the 
calculated potential activity time of the species at a site can be used 
to identify where activity restriction is likely to limit a species' distri-
bution or abundance (Figure 5c; Buckley, 2008; Kearney, 2012; Levy 
et al., 2017; Levy, Buckley, et al., 2016). This can be done by assum-
ing a fixed requirement for activity (Kearney & Porter, 2004), or by 
explicitly simulating energy and/or water intake using data on food 
properties and digestive physiology (Figure 5d) and comparing these 
to modeled energy and water requirements (Buckley, 2008; Kearney 
et al., 2018).

5.2  |  Endotherms

Biophysical models for endotherms use the same principles, but usu-
ally assume a constant target body temperature (or a narrow toler-
able range) and infer the consequences of this constraint for energy 
and water requirements (Porter et al., 1994). For a given body tem-
perature, it is possible to solve for the metabolic rate that satisfies 
the energy balance equation (Figure 4). Under cold conditions, for 
example, the model can calculate the increase in energy expendi-
ture needed to avoid hypothermia (Porter et al., 1994). Under warm 
conditions, the model can calculate the evaporative cooling costs 
needed to avoid hyperthermia, or the increase in body temperature 

in the absence of evaporation, assuming that the metabolic rate is 
constrained by a lower limit that represents the minimal rate of en-
ergy expenditure required for its current activity state (i.e., resting, 
digesting, moving) (Porter et al., 2000). Endotherms and ectotherms 
are generally modeled assuming they approximate a simple shape 
(e.g., sphere, ellipsoid) that has well- known heat transfer proper-
ties (O'Connor & Spotila, 1992; Porter et al., 2000). However, mul-
tipart models that are made up of various simple shapes (cylinders 
for legs, ellipsoid for the torso) have been used to better reflect the 
shapes of mammals and birds and to capture heat loss from append-
ages (Fitzpatrick et al., 2015; Mathewson & Porter, 2013). Moreover, 
animals with very complex geometries can have their convective 
heat exchange modeled using computational fluid dynamics (Dudley 
et al., 2013).

As with ectotherms, models of endotherms can be implemented 
in different ways, with different data requirements (Table 1). Most 
simply, they can be used to predict the energy or water costs 
of maintaining a set body temperature in a particular microcli-
mate (McCafferty et al., 2011; Riddell et al., 2019; Southwick & 
Gates, 1975). Inferring distribution or activity limits for endotherms 
can be more difficult than for ectotherms because endotherm per-
formance has a more complex response to temperature that is more 
dependent on water and food availability (but see Levy, Dayan, 
et al., 2016; Levy et al., 2019; Mitchell et al., 2018). Data on food 
properties, intake, and digestive physiology are needed for food and 
water balance calculations (Kearney et al., 2016; Porter et al., 2000). 
Therefore, most studies of endotherm distribution limits have fo-
cused on modeling a single life stage, usually adults. Several stud-
ies have incorporated the costs of lactation in mammals (Briscoe 
et al., 2016; Rogers et al., 2021) or estimated potential reproductive 
output (Kearney, Wintle, et al., 2010).

6  |  WHAT HAVE BIOPHYSIC AL MODEL S 
TAUGHT US SO FAR?

Biophysical models have long been applied to understand how 
climate constrains organisms and, more recently, to predict re-
sponses to future climate change (Figure 3a). Important lessons 
have emerged from these studies (see also Table 1). First, short- term 
weather conditions can strongly influence survival through time and 
space— processes that are not necessarily captured by annual or 
even monthly climate means commonly used in statistical models. 
For example, it is the combination of cold temperatures and high 
wind speed that results in high- energy costs for wintering seabirds 
(Fort et al., 2009), while the combination of hot weather and low 
water availability/high humidity limits the distribution of the koala 
because individuals cannot lose sufficient heat via evaporative 
cooling and remain hydrated (Briscoe et al., 2016). Moreover, when 
using monthly means of soil temperatures, models may substan-
tially underestimate lethal heat events that may kill lizards' embryos 
and lead to population declines (Levy et al., 2015). These studies 
show how important it is to get the temporal resolution right when 
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inferring climate change impacts with biophysical models (Kearney 
et al., 2012).

We have also learned that the interaction between climate 
change and the seasonal availability of preferred thermal conditions 
is complex. For example, climate change is projected to lengthen the 
reproductive season of a North American lizard but with any fitness 
gains being offset by the negative impacts of warmer summers on 
embryo and juvenile survival (Levy, Buckley, et al., 2016). Also, in 
high- elevation butterflies, dark color adaptations that maximize ab-
sorbance of solar radiation may become maladaptive and reverse 
to decrease risks of overheating under climate change (Buckley & 
Kingsolver, 2019).

Studies have also repeatedly illustrated the importance of mi-
croclimates that protect individuals from high body temperatures 
or high rates of evaporative water loss. This includes deep shade 
(Kearney, Shine, et al., 2009), cool underground refuges (Briscoe, 
McGregor, et al., 2022; Riddell et al., 2021), access to water for wal-
lowing (Rogers et al., 2021), or cool leaves or tree trunks (Briscoe 
et al., 2014; Potter et al., 2009; Wolf et al., 1996). In the microclimat-
ically complex intertidal zone, maximum mussel body temperatures 
were shown to have geographically varying sensitivity to a given 
increase in air temperature, with the body temperature change al-
ways lower in magnitude than the air temperature change (Gilman 
et al., 2006). Energetic constraints have more severely impacted 
birds than small mammals in Death Valley over recent decades 
due to their lesser ability to shelter from climate change (Riddell 
et al., 2021), showing that species or populations that can exploit 
these microclimates may be less vulnerable to climate change (al-
though see Buckley et al., 2015). Protecting or providing these mi-
croclimates can thus be a useful target of management. Conversely, 
microclimates with high solar radiation or humidity can push organ-
isms more rapidly toward their thermal or hydric limits, risks that are 
underestimated by approaches that focus on air temperature alone 
(Pincebourde & Casas, 2019).

Biophysical modeling studies have also highlighted traits or be-
haviors likely to render species less vulnerable to climate change— 
such as flexible activity timing. Some animals can minimize their 
exposure to stressful conditions by altering their patterns of daily 
activity. Extensive sensitivity analyses focused on terrestrial ecto-
therms suggested that, of all the behavioral and physiological strat-
egies available to them, a change to activity timing has the largest 
effect on predicted body temperatures (Stevenson, 1985b). Likewise, 
a study of diurnal rodent species predicted that a shift to nocturnal 
activity could compensate for the effects of climate change (Levy 
et al., 2019). However, there are often trade- offs between minimiz-
ing thermoregulatory costs and avoiding lethal conditions and other 
activities, such as maximizing food intake and avoiding predators 
(Long et al., 2014).

Finally, studies have illustrated that different life stages have 
different environmental and/or nutritional requirements (Kingsolver 
et al., 2011); accounting for the whole life cycle is therefore import-
ant. For example, adult desert iguanas are predicted to survive and 
grow at sites that do not have the right soil conditions (temperature 

and moisture) for their eggs to develop (Porter & Tracy, 1983). 
Additionally, there are often complex dependencies between life 
stages because the thermal sensitivities of each life stage and their 
microclimatic conditions both shift across ontogeny, meaning that 
the temporal pattern of conditions relative to the phenology of the 
animal is important (Briscoe et al., 2012).

7  |  LIMITATIONS AND OPPORTUNITIES

Models that explicitly capture mechanisms should, in principle, bet-
ter predict organismal responses to global changes, but there re-
mains a strong imbalance toward the use of correlative approaches. 
Broadscale application of biophysically based mechanistic niche 
models to many species will require a large, concerted effort (Urban 
et al., 2022). Limitations in characterizing microclimates, trait data 
collection and collation, and education and software must be over-
come, but there are also exciting new opportunities to break through 
these limitations.

7.1  |  Microclimates

Until recently, gathering input data for microclimate models in-
volved searching, downloading, and tailoring the relevant climate/
weather data. Recent implementations of R packages for microcli-
mate modeling provide convenient access to online datasets such 
as NCEP (Kemp et al., 2012) and ERA5 (Klinges et al., 2022) climate 
datasets for use in microclimate models. The NicheMapR (Kearney 
& Porter, 2017) package allows users to specify a location and time 
window of interest, extract the input data, and run an expanded ver-
sion of the Niche Mapper microclimate model (Porter et al., 1973). 
The microclima R package consists of functions for pre- adjustments 
of such input forcing data for important “mesoclimate” effects 
such as wind sheltering, coastal influences, cold air drainage, and 
elevation- associated lapse rates (Maclean et al., 2017, 2019). These 
two complementary packages have now been integrated (Kearney 
et al., 2019), highlighting the value of collaborations between re-
search groups.

Another challenge is the relatively coarse temporal and spatial 
resolution of online climate databases compared to those of ani-
mals (Potter et al., 2013; Sears et al., 2011). For many applications, 
hourly resolution data can be extrapolated from daily minimum and 
maximum values (Kearney et al., 2014). However, when organisms 
are sensitive to extreme temperatures or rare environmental com-
binations, hourly resolution is needed (Levy et al., 2015). Integrating 
high spatial resolution thermal landscapes with biophysical models 
can inform how organisms are constrained by thermal transients and 
trade- offs in their ability to access environments (Basson et al., 2017; 
Kearney, Porter, et al., 2021; Malishev et al., 2018; Sears et al., 2016, 
2019). Although such data are rare, recent developments in remote 
sensing can revolutionize microclimate estimates by capturing high- 
resolution data. For example, information from satellites, such as the 
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LiDAR products of the Global Ecosystem Dynamics Investigation 
and small drones, can produce submeter resolution data (e.g., ele-
vation, vegetation, thermal maps) (though see Maclean et al., 2021).

Although microclimate models can supply quite accurate predic-
tions for open habitats, more testing and development is needed to 
accurately model microclimates in habitats with complex vegetation 
and high spatial heterogeneity. For example, accounting for turbu-
lence in forests remains challenging (Brunet, 2020), due to the com-
plex interacting effects of vegetation, landscape, and wind on heat 
balance at fine resolutions. Heterogeneous environments are also 
challenging since it is hard to capture the strong nonlinearities of 
the heat exchange components across the landscape. Although nu-
merical methods can overcome these challenges (e.g., finite element 
approaches, see Baldocchi, 1992; Gastellu- Etchegorry et al., 2004), 
they are computationally challenging. Fortunately, advances in data 
collection are substantially improving our capacity to validate mod-
els, or to measure microclimate at complex landscapes where our 
models are still inaccurate (e.g., Fabbri & Costanzo, 2020).

Microclimate models involve many physical and numerical cal-
culations. At higher spatial and temporal resolutions, these calcu-
lations may be too computationally intensive and require massive 
data storage facilities. These challenges often limit calculations to 
small geographic extents or to relatively coarse resolutions, and dis-
courage storing and sharing of model outputs, increasing the need 
for repeated computation. There are at least three potential solu-
tions to this problem. First, statistical models (Maclean et al., 2021) 
or Gaussian process emulation techniques (Conti et al., 2009) can 
estimate complex dynamics of microclimates over short time pe-
riods, eliminating the need to run microclimate models in time in-
crements and reducing run times. Second, modern computationally 
efficient programming languages, such as Julia (see below), offer the 
ease and expressiveness of high- level languages with performance 
comparable to Fortran or C++ (Bezanson et al., 2018). Finally, it may 
not always be necessary to model microclimate in a spatially explicit 
manner— often knowledge of the mean, variance, and/or range of mi-
croclimatic conditions at a given locality may be sufficient to answer 
the research question (Bütikofer et al., 2020).

7.2  |  Functional trait data

Biophysical models require detailed organismal trait data spanning 
morphology, physiology, behavior, and life history, to tailor predic-
tions to specific taxa or questions. These are necessarily “functional 
traits” because they act as important parameters or thresholds for 
models of an organism's performance (Dawson et al., 2021; Kearney, 
Porter, et al., 2021). Biophysical models are often criticized for being 
parameter hungry (Buckley et al., 2010; Kearney & Porter, 2009), but 
with the rapidly increasing availability of trait databases, this criti-
cism has become less valid.

Functional trait databases have developed rapidly for plants, 
with the number of entries for functional traits increasing from 2.07 
to 11.85 million between 2007 and 2020 across nearly 280,000 

plant species (Kattge et al., 2020), half of these being linked to spe-
cific geographic locations. Plant mechanistic models typically focus 
on growth rates as the primary metric of performance (Duursma & 
Medlyn, 2012; Schouten et al., 2020), though phenology is also com-
monly used (Chapman et al., 2014). However, there are still very few 
measurements of solar absorptivity (but see Gates, 1980).

Relative to plants, databases of functional traits for animals are 
less consolidated and extensive. Biophysical heat and water flux cal-
culations of animals require estimates of body size, area, and shape 
as well as solar reflectance and emissivity. For endotherms, insu-
lation properties (i.e., density, length, diameter of hairs) (Campbell 
& Norman, 1998; Gates, 1980) are required to estimate thermal 
conductivity of insulation, such as pelage or plumage, or conduc-
tivity can be measured directly from specimens (Porter et al., 1994; 
Riddell et al., 2021). Relevant physiological functional traits include 
basal or standard metabolic rate, cutaneous resistance to water loss, 
target body temperature, thermal tolerances, and thermal optima. 
Behavioral traits include body temperature thresholds for thermo-
regulation, including thermoregulatory mode (or accuracy) and des-
iccation avoidance (Clusella- Trullas & Chown, 2014; Kearney, Shine, 
et al., 2009; Riddell et al., 2018; Sears et al., 2016). Gathering infor-
mation on so many traits is challenging since functional trait data-
bases for animals typically focus on one type of trait (Herberstein 
et al., 2022; Myhrvold et al., 2015), but more often, these traits are 
published for groups of animals (Bennett et al., 2018; Clusella- Trullas 
& Chown, 2014; Grimm et al., 2014; Le Galliard et al., 2021; Madin 
et al., 2016; Oliveira et al., 2017). In addition to consolidated data-
bases, there is a wealth of animal functional trait data available in 
the published literature, particularly for well- studied groups. For 
example, a literature search with terms relating to different types 
of relevant traits for lizards and snakes (see Appendix S1) identified 
9029 unique papers. Papers focused on thermal physiology were 
most common, followed by hydric physiology, morphology (exclud-
ing body mass), metabolism, and then studies that examined both 
behavioral thermoregulation and thermal physiology (Figure 3b).

Although the availability of functional trait data is rising, there 
is much room for improvement in how these data are collected and 
collated, and methodology can have a substantial impact on trait 
values. Thermal tolerances can exhibit important variation due to 
acclimation effects, the rate at which temperature changes, or the 
duration in which organisms are exposed to a temperature (Pintor 
et al., 2016; Sunday et al., 2019). Similarly, functional traits can 
vary depending on whether they are measured under constant or 
(more natural) fluctuating conditions (Morash et al., 2018; Niehaus 
et al., 2012). Species' traits can also exhibit substantial variation 
within and across populations, across developmental life stages, or 
in response to environmental cues over time (i.e., phenotypic or be-
havioral plasticity) (Moran et al., 2016). Ensuring that individual- level 
measurements and relevant metadata are recorded in functional 
trait databases will help ensure that trait data are available and can 
reliably be used in biophysical modeling. For example, georeferenced 
trait data can be combined with environmental data to assess the 
environmental sensitivity of certain traits, while museum collections 
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can be used to quantify spatial and temporal variation in traits 
(Briscoe et al., 2015; Gardner et al., 2019). Alternatively, sensitivity 
analyses can assess the impact of variation in a particular trait or 
identify the functional traits that most strongly influence estimates 
of performance (Augusiak et al., 2014; van der Vaart et al., 2016). A 
single general database of functional traits for biophysical (and met-
abolic) modeling would greatly enhance the uptake of the methods, 
make data deficiencies clear, and advance the study of functional 
traits in general (Kearney, Jusup, et al., 2021).

7.3  |  Training and background

The lack of training in the requisite concepts and techniques is a sub-
stantial obstacle to widespread application of biophysical models in 
global change biology. Quantitative training in undergraduate eco-
logical courses is often poor (Barraquand et al., 2014) and focused 
primarily on statistical approaches (Auker & Barthelmess, 2020). In 
our experience, modeling issues associated with dynamical systems 
models (Box 1), including the derivation of differential equations 
and their integration through time via numerical models, are alien 
to many modern biologists and ecologists. The availability of several 
open software packages for biophysical modeling means that imple-
menting these methods is now easier than ever before. However, 
users still need to be familiar with the underlying principles and un-
derstand how these are implemented (including key simplifying as-
sumptions and approximations), so that they can generate models 
appropriate to the question being asked (O'Connor & Spotila, 1992). 
Realistic application also requires a solid understanding of the natu-
ral history of the species being modeled.

Biophysical modeling draws on disparate fields, such as phys-
ics, engineering, climatology, physiology, and behavioral ecology. 
Spending time becoming familiar with these topics and skills is a nec-
essary and worthwhile investment for newcomers to this approach. 
A recommended starting point for those entering this field is to gain 
familiarity with the fundamental processes and equations describing 
basic forms of heat exchange because these form the bedrock of bio-
physical ecology. Interested readers are directed toward the free on-
line educational resources created by a subset of the authors (TrEnCh 
Project, 2022), foundational textbooks (Campbell & Norman, 1998; 
Gates, 1980), and the online applications (CAMEL, 2022). Tutorials, 
vignettes, and Shiny apps associated with R packages (NicheMapR, 
TrenchR) allow users to begin to practically apply these tools and be-
come familiar with model parameters and outputs. Alongside further 
expansion of these online resources, greater exposure to biophysi-
cal modeling in undergraduate and postgraduate classes focused on 
physiology, ecology, and/or quantitative methods, as well as focused 
workshops and training opportunities at postgraduate- level and 
above, would help adoption.

Biophysical models require detailed morphological, physiolog-
ical, behavioral, and microclimatic data about the species under 
study to parameterize and test them, and these data will often need 
to be collected by the researcher. While many measurements are 

relatively straightforward (e.g., measuring body mass and size, pel-
age depths or preferred temperatures), others can require specialist 
equipment or techniques (e.g., measuring solar reflectance, energy 
and water turnover using doubly labelled water, or thermal depen-
dence of metabolic rate or evaporative water loss using respirom-
etry). Understanding and measuring the physical processes driving 
microclimates also requires discipline- specific expertise (Maclean 
et al., 2021). Collaborating with other researchers such as physiol-
ogists, meteorologists, hydrologists, field biologists, or species ex-
perts, who have specialized equipment, expertise or existing data, 
can help overcome these challenges. Indeed, greater collaboration 
between researchers in different fields would facilitate efforts to 
apply biophysical modeling more broadly, not only by enhancing 
data collection efforts but also by highlighting processes that may 
not be adequately captured by current models (Mitchell et al., 2018).

7.4  |  Software ecosystems

The use of statistical programming tools— largely R, sometimes 
Python— has become ubiquitous for researchers of global change 
biology (Lai et al., 2019). This competence has developed in tandem 
with the emergence of vast software ecosystems that provide the 
many interoperable open- source packages we combine to process 
data and build models (Hoving et al., 2013; Plakidas et al., 2017). It 
is rare for researchers to write their own statistical algorithms: in-
stead, statistical modelers combine freely available tools to analyze 
their specific problem using high- level model definitions. In statis-
tics, modelers stand on the shoulders of thousands, across varied 
disciplines, who have published their tools on CRAN (Hornik, 2012) 
and contributed to R's software ecosystem.

Biophysical modeling requires researchers to write a different 
kind of software to the statistical scripts many are accustomed to. 
The differential equations of biophysical models often have hetero-
geneous, problem- specific structure, unlike the generic algorithms 
used in statistical approaches. This comes with a different set of 
social and technical problems to those encountered in statistical 
modeling and has limited the development of software ecosystems.

The situation is improving greatly in biophysical modeling, as 
tools like NicheMapR, microclima, and TrenchR have been made 
open and available. But, in contrast to the broad base of contributors 
that statistical software draws on, we are only able to integrate ex-
isting code into a limited extent of our work. It is relatively common 
to use packages to provide microclimate or nutrient data to feed into 
custom metabolic models (see Supporting Information). However, it 
is rare to use existing packages as components to develop new, cus-
tom models. The outcome of this pattern is clear in the reviewed lit-
erature on animals: researchers of recent papers (>2000) are divided 
in two groups, those parameterizing existing models, like the ecto-
therm model in NicheMapR (42%), and those writing custom mod-
els completely from scratch (46%). Some of the few cases of model 
modification directly edited the package code (~3%), a questionable 
practice for maintaining correctness and reproducibility. Biophysical 

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16557 by C

ochrane Israel, W
iley O

nline L
ibrary on [31/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  13BRISCOE et al.

modelers need more capacity to work between these extremes, the 
ability to easily modify only the required components of existing 
models, and generally to make better compromises between flexi-
bility and effort.

There are several reasons for the current situation: Most code 
was developed before open and reproducible coding principles; a 
preference for low- level languages like Fortran that never devel-
oped significant software ecosystems; and under- recognized tech-
nical problems, for example, that connections between components 
in biophysical models often needs to occur inside differential equa-
tions because processes often feedback on each other (e.g., leaf 
temperature and stomatal conductance in plants). Using package 
components inside differential equations often necessitates that the 
connections between model components (i.e., function calls) occur 
in high performance code, not in slower R or Python wrappers.

Biophysical modeling will likely continue to require high- 
performance tools as the quantity and resolution of available data 
increases. But, to leverage previous work as statistical modelers do, 
biophysical modelers need modular tools that are also embedded in 
a software ecosystem and can be used together to construct new 
models without rewriting basic algorithms from scratch.

A potential solution to this problem is the Julia language 
(Perkel, 2019; Schouten et al., 2020, 2022). Julia has a rapidly grow-
ing, highly intercompatible software ecosystem targeted at scien-
tific computing, differential equations, and model optimization. Its 
code is similar to dynamic languages like Python and R. However, it 
compiles packages and user scripts down to machine code at run- 
time giving performance comparable to Fortran. As an example of 
this potential, Julia is used for large- scale biophysical modeling by 
the Climate Modeling Alliance (CliMA). The CliMA project com-
bines model components maintained in separate repositories for 
their ocean, land, and atmospheric models. Within the land model, 
specific tools for stomatal conductance and photosynthesis are 
defined in separate modular packages: notably these can be used 
independently from climate models for other kinds of biophysical 
research (Wang & Frankenberg, 2022).

An important outcome of relying on shared, generic tools better 
integrated into a software ecosystem, rather than custom scripts or 
tools from field- specific silos, will be that benchmarking and testing 
can be done across a larger number of researchers, to a higher stan-
dard. Interdisciplinary collaboration is also likely to improve from the 
process of using and developing shared tools.

Another important component of furthering mechanistic ap-
proaches in global change biology is developing computational in-
frastructure for model development and testing. The Ecological 
Forecasting Initiative has developed comprehensive infrastructure 
for near- term ecological forecasting that could readily be adapted 
for the mechanistic approaches that benefit longer term forecasting 
(Dietze et al., 2018, 2021). Central to the computational infrastruc-
ture are databases with historical biological data for model testing 
and comparisons. The availability of relatively high- resolution histor-
ical climate and paleoclimate datasets means that it is now possible 
to revisit or reinterpret previous field studies or past extinctions, 

including using these data for model testing (Mathewson et al., 2017; 
Morris et al., 2022; Wang et al., 2018). An integral part of these fu-
ture workflows will be generating and mapping realistic estimates 
of uncertainty, for example, due to underlying climate forecasts, 
traits (including behavior), or model structure (Briscoe et al., 2016; 
Dietze, 2017).

8  |  VISION FOR FUTURE OF TACKLING 
GLOBAL CHANGE BIOLOGY PROBLEMS

Our long- term vision for the future of biophysical modeling involves 
researchers, trained in the physical principles of biophysical ecology, 
using modular and flexible methods, and using data compiled in a 
standardized functional trait database, to answer diverse questions 
in global change biology. A barrier to realizing this vision is that fund-
ing calls for projecting the biodiversity responses to climate change 
often seek applied projections for many species, analogous to that 
feasible with statistical models (i.e., correlative species distribution 
models). In contrast, furthering models built around biophysical 
ecology will require extensive basic research and investment in the 
initiatives outlined above. We argue such efforts are nonetheless 
essential to adequately projecting biological responses to environ-
mental change.

As biophysical models become more widely used, the accumu-
lation of case studies from different systems, as well as improved 
infrastructure for testing and comparison, will aid in finding a middle 
ground whereby predictions include sufficient biological mechanisms 
for accuracy but are feasible to implement and facilitate further up-
take of the methods. Additionally, detailed models implemented and 
tested for varied taxa in limited locales can achieve some generality 
by identifying important limiting mechanisms that can be investi-
gated for other organisms in other locations. For example, many ex-
isting biophysical models of ectotherms focus on responses to core 
body temperature because the mechanistic basis of temperature re-
sponses are best empirically probed and understood, and trait data 
are more available (Figure 3b). However, studies that explicitly incor-
porate water balance and how this constrains behavior have high-
lighted the importance of these processes, and provide templates 
for incorporating these aspects (Kearney et al., 2013, 2018; Riddell 
et al., 2017). Given the prominence of multiple stressors as climates 
change (Gunderson et al., 2016), it will be important to more rou-
tinely account for interactions between stressors such as water and 
oxygen balance, and to consider the dynamics of whole life cycles 
(Kingsolver et al., 2011; Porter & Tracy, 1983). Investigation of hy-
potheses such as the oxygen-  and capacity- limited thermal tolerance 
can also inform the expansion of biophysical models (Pörtner, 2021).

As we have discussed, biophysical models can be used alone or 
can be incorporated into other models that capture key processes— 
including movement, population dynamics, biotic interactions, 
and evolution (Buckley et al., 2010; Urban et al., 2016, 2022). 
Indeed, many of the earliest biophysical modeling studies directly 
incorporated these latter processes (Dunham & Overall, 1994; 
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Kingsolver, 1979; Porter et al., 1973). With modular, general, bio-
physical modeling software, such studies will become more feasible, 
supporting the development of integrated mechanistic biodiversity 
models (Urban et al., 2022). For example, estimates of survival and/
or potential reproduction from biophysical models can be used as in-
puts in spatially explicit population dynamics models, to better cap-
ture how biophysical processes combine with demographic traits to 
constrain population growth (Buckley, 2008). Likewise, predictions 
of energy and water costs associated with different environments 
can be integrated into individual- based models that explicitly model 
behavior as the outcome of trade- offs between factors such as ther-
mal and hydric costs, food and water intake, predation risk, compe-
tition, and social activities (Malishev et al., 2018; Sears et al., 2016). 
Such approaches may be particularly important for accounting for 
missed opportunity costs in climate change forecasts (Cunningham 
et al., 2021). Species responses to environmental change are likely to 
be strongly driven by biotic interactions (Buckley, 2013; Jankowski 
et al., 2010). For example, incorporating likely changes in bamboo 
distribution exacerbates the predicted effect of climate change on 
the giant panda (Ailuropoda melanoleuca) (Zhang et al., 2018).

An often discussed but seldom implemented approach to ex-
panding biophysical modeling approaches is “hybrid” models, which 
use computational pattern- based approaches to inform uncertain or 
unknown parameters or relationships (Buckley et al., 2010; Dormann 
et al., 2012). The most common strategy is to include mechanisti-
cally derived layers (such as potential activity durations, heat units 
available for development, incidence of stressful environmental 
conditions, or energy balances) as predictors in correlative species 
distribution models (Mathewson et al., 2017; Mi et al., 2022). While 
these methods are still closer to the statistical end of the spectrum 
(i.e., the data lead the dance), using mechanistically derived layers 
that translate time series of environmental conditions into metrics 
of fitness relevant to the species should help these models predict 
more reliably to novel conditions. Alternatively, Bayesian statistics 
and “domain- aware” or “model- informed” machine learning models 
can be used to inform statistical models with biological information 
and constraints, which can come from biophysical models or experi-
mental results (Beery et al., 2021; Kotta et al., 2019). Additionally, in-
verse modeling could be used to infer biophysical model parameters 
from endpoints such as occurrences (Evans et al., 2016; Fordham 
et al., 2022).

One important motivation for furthering biophysical models is 
that they can readily address global changes such as the spread 
of invasive species and diseases and habitat loss or degradation— 
and how these will interact with future climate change. For ex-
ample, the ability to generate forecasts in novel environments 
and to identify management levers means that biophysical mod-
els are particularly useful for modeling invasive species (Barton 
& Terblanche, 2014; Chen et al., 2021; Kearney et al., 2008). 
Similarly, they have been used to map the spread of diseases such 
as chytrid fungus in the Northern cricket frog (Acris crepitans), 
where relationships between infection prevalence and/or survival 
with body temperature are known (Sonn et al., 2020). Biophysical 

models can also be integrated into scenario modeling to assess 
how different forms of global change (e.g., land use, climate 
change) will alter species distribution or population dynamics in 
the future (Nowakowski et al., 2017).

Overall, as biophysical models become more integrated into 
studies of global change, we will develop stronger linkages between 
physical and biological disciplines, greater predictive capacity, and 
greater understanding of the relevant processes and how to manage 
them.
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