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Abstract

Much understanding of organismal responses to climate change and variability relies on the

assumption that body temperatures are equal to temporally averaged air temperatures high

above the ground. However, most organisms experience microclimates near the ground

and acute exposure to solar and thermal radiation and thermal extremes can substantially

elevate or depress their body temperatures. We introduce the TrenchR package, which aids

in Translating Environmental Change into organismal responses. The package includes

microclimate models to vertically scale weather station data to organismal heights. Addi-

tional functions model and temporally partition air and soil temperatures and solar radiation.

TrenchR biophysical modeling tools include both general models for heat flows and specific

models to predict body temperatures for a variety of ectothermic taxa. We also offer utility

functions to aid in estimating the organismal and environmental parameters needed for bio-

physical ecology. TrenchR focuses on simple and modular functions so users can create

transparent and flexible models for biophysical applications. The package aims to introduce

and enable microclimate and biophysical modeling to improve ecological and evolutionary

forecasting. We further this aim through a series of educational modules that introduce the

field of biophysical ecology.

Introduction

Responses of organisms and ecosystems to climate change are heterogeneous and thus incon-

sistent with current predictive models [1]. Some of these predictive shortcomings stem from

omitting spatial and temporal environmental variation and how it interacts with organismal

phenotypes (e.g., size, coloration) [2, 3]. Many analyses assume that organismal body tempera-

tures are equal to shaded air temperatures inside a screen at weather station height (usually 2

meters). However, air temperatures near the ground where most organisms reside are often

considerably warmer, and absorption of solar and thermal radiation can raise body
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temperatures well above air temperatures, resulting in potential discrepancies of tens of

degrees Celsius [4–6]. The rapid drop in performance and onset of thermal stress at high body

temperatures can amplify the biological significance of underestimations [7].

Applications are increasingly demonstrating the importance of accounting for microcli-

mate variation [8–10]. Acute thermal stress events are often more relevant to the physiology

and energy balance of organisms than daily, monthly, or annually averaged environmental

conditions. Yet, daily and seasonal environmental variation is often neglected [11, 12]. We aim

to help remedy these shortcomings by introducing the TrenchR package (https://github.com/

trenchproject/TrenchR) as a component of the TrEnCh project (https://www.trenchproject.

com), which builds computational and visualization tools to Translate Environmental Change

into organismal responses.

The mathematical tools for leveraging environmental data to predict organismal conditions

have long lingered in books [13, 14] and articles [15, 16], but adoption of these tools has not

kept pace with research on climate change responses. In recent decades, adoption of biophysi-

cal approaches is expanding with recognition of the importance of spatial and temporal envi-

ronmental variation to determining climate change responses [17, 18] and the increased

dissemination of computational tools.

Estimating how organisms experience their thermal environment generally entails two clas-

ses of models [13, 14] (Fig 1). Microclimate models allow scaling conditions from sensors to

organism height. They can characterize heat and air transport to estimate vertical air and soil

temperature and wind profiles. They can also characterize direct and diffuse solar radiation

and longwave radiation emanating from the sky, ground, and surrounding objects like vegeta-

tion. Microclimate model output is used as input in biophysical models, which estimate body

temperatures using an energy budget to balance heat exchanges between organisms and their

environment.

The TrenchR package is intended to complement the NicheMapR package, which includes

sophisticated microclimate [18] and biophysical [20] models. Although the Fortran source

code was recently released, the complexity of NicheMapR functions can make it difficult to

understand and modify the source code and Fortran can be complicated to compile and run.

The integrated functions made it difficult to separate and adapt different forms of heat flow,

but we note that some modular R functions were made available during the review process for

this manuscript that enable comparison with the TrenchR package (S1 Text). Many of the

approaches are similar between the packages, but TrenchR provides simple R functions to aid

the understanding and accessibility of biophysical approaches. The TrenchR functions are

modular and easily adapt to a variety of organisms and research questions.

Although many of the TrenchR functions are general, some components of TrenchR are

best suited for small ectothermic animals since body temperatures are generally assumed to be

uniform and at steady-state. We omit plant specific biophysical models since they are the focus

of several R packages [tealeaves: [21]; plantecophys: [22]]. Some energy budget calculation

components of biophysical models are also available in the ThermImage package [23]. Micro-

climate models, with an emphasis on describing spatial variation, are also available in the

microclima package [24].The microclimc package enables accounting for how forest canopies

alter microclimates [25].

The development of increasingly complex microclimate and biophysical models before

open and reproducible science was emphasized or feasible has limited their uptake. Yet, such

models are crucial to improving understand and prediction of species responses to climate

change. Simple and modular functions can be combined and extended in a null modeling

approach until the model adequately describes organismal interactions with their environment

while remaining accessible and transparent. Many applications will warrant the inclusion of

PLOS CLIMATE TrenchR microclimate and biophysical models

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000139 August 2, 2023 2 / 15

manuscript are available at https://github.com/

trenchproject/TrenchRmanuscript/.

Funding: This work was supported in part by

grants from the US National Science Foundation

[DBI-1349865 to L.B.B.]. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://github.com/trenchproject/TrenchR
https://github.com/trenchproject/TrenchR
https://doi.org/10.1371/journal.pclm.0000139
https://github.com/trenchproject/TrenchRmanuscript/
https://github.com/trenchproject/TrenchRmanuscript/


more complex microclimate and biophysical algorithms from R packages such as NicheMapR,

microclima, and microclimc.

Methods and features

The TrenchR package (http://trenchproject.github.io/TrenchR/) aims to promote accessibility

and reproducibility. We welcome contributions and corrections from users. Our package was

built using the devtools methodology (https://github.com/r-lib/devtools) with version control

managed in Github. Issues and feature requests can be contributed in Github (https://github.

com/trenchproject/TrenchR). The package is available via CRAN and Github.

Validation against sensor data including from physical models of organisms is essential to

microclimate and biophysical modelling. We adapted well established and validated functions

from biophysical ecology textbooks [13, 14] and research articles. Source references are cited

in function headers and reference sections. Many of the references, particularly those develop-

ing taxa-specific biophysical models, contain extensive empirical validation. S2 Text illustrates

validation of biophysical models using a physical model of a grasshopper. S1 Text compares

TrenchR functions to NicheMapR functions. We have incorporated default parameters (e.g.,

organism emissivity or heat conduction rates) when general values are available. Many func-

tions additionally include comments that describe potential parameterizations. The biophysi-

cal ecology texts [13, 14] include many tables with parameter values and we provide several

data tables describing solar and thermal absorptivity in TrenchR.

Components

TrenchR functions are organized into the following categories (Fig 2):

Utility functions. Calculate environmental metrics that form the basis of microclimate

and biophysical models (e.g., zenith and declination angles, which describe the angles of

Fig 1. A) Microclimate models scale air and soil temperatures and wind speeds from sensor to organismal heights. B) Biophysical models balance heat

exchanges between organisms and their environment to estimate body temperatures [19]. A thermal image depicts how grasshopper body

temperatures vary substantially from vegetation, air, and ground temperatures due to heat exchange.

https://doi.org/10.1371/journal.pclm.0000139.g001
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incident sunlight), facilitate modeling diurnal temperature variation, and estimate biologically

relevant aggregate metrics such as degree days available for organismal development.

Allometric functions. Allow estimating the dimensions of organisms needed for energy

balances and other analyses. Available functions can convert between organismal length, mass,

surface area, and volume as well as estimate the silhoutte area, which describes the organismal

area exposed to solar radiation.

Microclimate functions. Facilitate calculating the environmental conditions experienced

by organisms. Temperature and wind profile functions scale environmental conditions from

sensors to organismal height. Radiation functions allow estimating incoming solar radiation

and partitioning the variation diurnally and across components (i.e., direct, diffuse, reflected).

General biophysical functions. Provide generalized models of heat exchanges between

organisms and their environment so that users can build custom biophysical models. The

functions allow implementing an energy balance including the following components of heat

exchange between organisms and their environment:

• radiative heat exchanges of solar and thermal radiation;

Fig 2. An examplar aim of translating from environmental and phenotypic data to organismal conditions in a given environment (grey boxes) can be

achieved in TrenchR via several categories of functions (white boxes). We list example functions for each category used in the example application below.

https://doi.org/10.1371/journal.pclm.0000139.g002
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• convective heat exchanges between organisms and their surrounding fluid (air or water)

driven by fluid flow;

• conductive heat exchanges between organisms and solid surfaces (generally the ground) due

to physical contact; and

• evaporative and metabolic heat exchanges associated with organisms’ evaporative water loss

and metabolic heat generation.

Additional functions aggregate these forms of heat exchange into energy balances and to

use the energy balances to predict body temperatures.

Specific biophysical functions. provide biophysical models that have been built for par-

ticular organisms based on their physical properties, behavior, environment, and life history.

We currently provide published biophysical models for lizards, salamanders, butterflies, grass-

hoppers, limpets, mussels, and snails. Most models predict operative environmental tempera-

tures, which are the steady-state body temperatures of organisms with specified physical

properties in a specific microclimate and assume no heat exchange via metabolism or evapora-

tion [26]. However, we also present an analytical function for humid operative temperature

that incorporates the effects of evaporative cooling on operative temperatures for wet-skinned

ectotherms, such as salamanders.

Vignettes and introductory tutorials

We introduce the functions in several vignettes. A good place to start is the Allometry and Con-
versions vignette, which provides tools for preparing data, such as estimating additional

dimensions of organisms from measured dimensions. The Estimating Microclimates vignette

provides resources for estimating the environmental conditions experienced by organisms.

This includes estimating solar radiation and its components, diurnal variation in temperature

and radiation, temperature and wind speed profiles, and soil temperatures and profiles.

Finally, the core biophysical modeling functions are described in a tutorial on Using Energy
Balances to Estimate Body Temperatures. Components of an energy budget can be estimated

using individual functions and then body temperatures can be solved for using either a generic

energy balance or taxa specific biophysical models. We additionally offer a List of Symbols used

in equations.

For additional background on microclimate and biophysical modeling, we have updated a

series of tutorials entitled Physical Processes in Ecosystems. We intend the tutorials to provide a

more contained and accessible introduction to microclimate and biophysical modeling than

that included in classic textbooks [13, 14]. The tutorials provide less detailed coverage of many

of the topics contained in the books. The series of 14 tutorials starts with an overview of the

calculus and physics principles underlying the modeling.

Thermodynamics and energy budget modeling are then introduced with detailed examples.

Tutorials address the climate space concept, operative temperatures, biophysical models for

leaves and sheep, and heat flow in soils. We have revised the tutorials (which originated from

an NSF training grant in 1979 and lacked broad distribution) to include R code and utilization

of TrenchR functions. We expanded the original series to include tutorials contributed by M.

Kearney introducing the Microclim environmental data [27] and integrating the Microclim

data with biophysical modeling to examine broad scale climatic limits. The tutorials are pro-

vided in html form and available for download as a pdf at the bookdown server (https://

bookdown.org/huckley/Physical_Processes_In_Ecosystems/). R markdown files for the tuto-

rials are available in Github (https://github.com/trenchproject/TrenchRmodules).
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Results

We illustrate the use of the TrenchR package by estimating an energy budget for a Sceloporus
lizard on June 1, 2021 in Santa Fe, New Mexico, USA (35.69˚N, -105.944˚W, elevation: 2121

m). The simplified example, which is designed to be self-contained, is also incorporated in the

Using energy balances to estimate body temperatures vignette. We start by generating environ-

mental inputs (Fig 2). Using these inputs, we estimate the energy budget with component

functions. Finally, we use an integrated biophysical model to estimate operative environmental

temperatures. See S2 Text for a more realistic example examining a time series of microclimate

data and applying and testing the biophysical models.

We will use the energy budget to estimate body temperature, Tb, which can depart dramati-

cally from the air temperatures due to heat exchange with the environment. Heat energy is

exchanged with the environment by way of solar and thermal radiation, metabolic reactions,

and evaporation. The organism also exchanges heat with the surrounding air or water via con-

vection and with substrate it is in contact with via conduction. The balance of these heat

exchanges (omitting metabolism and evaporation, which are often negligible for ectotherms)

can be estimated and often referred to as operative environmental temperature, Te [26]. Te is

an estimate of Tb and the package functions refer to Tb for simplicity. Our exemplar estimation

of Tb assumes steady-state thermal conditions. Additionally, we assume that the lizard’s body

temperature is homogenous, which is generally reasonable for small ectotherms. Approaches

to account for thermal gradients between the animal’s core and its skin are available elsewhere

[28].

Let us assume the lizard is in an unshaded location where a weather station at standard

height (2 meters) reports that the daily air temperature varies from a minimum of 10˚C to a

maximum of 25˚C and the wind speed averages 1 m/s. The soil surface temperature varies

from a minimum of 15˚C to a maximum of 30˚C. We assume that atmospheric transmissivity

τ = 0.7 and albedo ρ = 0.6.

Environmental data

At the first stage, we prepare the environmental data for analysis. We will estimate hourly air

and soil temperatures and radiation using a function describing diurnal temperature variation.

We start by estimating the day of year and the timing of sunrise and sunset:

# Set up input data as variables

lat <- 35.69 # Latitude (degrees)

lon <- -105.944 # Longitude (degrees)

elev <- 2121 # Elevation (meters)

Tmin <- 10 # Minimum air temperature (C)

Tmax <- 25 # Maximum air temperature (C)

Tmin_s <- 15 # Minimum soil temperature (C)

Tmax_s <- 30 # Maximum soil temperature (C)

u <- 1 # Wind speed (m/s)

# Assumptions
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tau <- 0.7 # Atmospheric transmissivity

rho <- 0.6 # Albedo

Tb0 <- 25 # Initial assumption of body temperature (C)

doy <- day_of_year("2021-06-01", format = "%Y-%m-%d") # Day of
year

snoon <- solar_noon(lon = lon, doy = doy) # Estimate solar noon

dayl <- daylength(lat = lat, doy = doy) # Estimate day length

tr <- snoon—dayl / 2 # Time of sunrise

ts <- snoon + dayl / 2 # Time of sunset

Although measured solar radiation is preferable if available, we can estimate hourly solar

radiation by discounting incoming solar radiation as it moves through the atmosphere as fol-

lows. We use the approach from Cambpell and Norman [14], which uses an empirical relation

to partition radiation into direct, diffuse, and reflected components. The partition_
solar_radiation() function includes 8 empirical relationships for, and the propor-

tion_diffuse_solar_radiation() includes a more complex numerical approximation for, parti-

tioning radiation components as described in the Estimating microclimates vignette.

# Estimate zenith angle (degrees)

psi_deg <- sapply(0:23, FUN = zenith_angle, doy = doy, lat =
lat, lon = lon)

# Convert to radians

psi_rad <- degrees_to_radians(psi_deg)

# Estimate radiation

Srad <- sapply(psi_rad, FUN = solar_radiation, doy = doy, tau =
tau, elev = elev, rho = rho)

# Separate solar radiation into direct, diffuse, and reflected
components

Sdir <- Srad[1,] # Direct solar radiation (W/m2)

Sdif <- Srad[2,] # Diffuse solar radiation (W/m2)

Sref <- Srad[3,] # Reflected solar radiation (W/m2)

We then calculate hourly air and soil surface temperatures based on daily minimum and

maximum temperatures. We select the sine-exponential model for air temperature and the

sine model for surface temperature [29]:

# Air temperature (C)
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Ta <- sapply(1:24, diurnal_temp_variation_sineexp, T_max =
Tmax, T_min = Tmin, t_r = tr, t_s = ts, alpha = 2.59, beta = 1.
55, gamma = 2.2)

# Soil surface temperature (C)

Ts <- sapply(1:24, diurnal_temp_variation_sine, T_max = Tmax_s,
T_min = Tmin_s)

At the second stage, we use microclimate models to scale air temperature (Tr) and wind

speed (ur) from weather station height (reference height zr = 2 m) to lizard height (organism

height z = 0.02 m). We assume a surface roughness of z0 = 0.2 m, which corresponds to bare

sand and determines the turbulence of airflow. We implement free air temperature and wind

speed profiles driven by density differences but profiles forced by wind speed are also

available.

# Neutral air temperature profile

Ta_liz <- air_temp_profile_neutral(T_r = Ta, zr = 2, z0 = 0.2,
z = 0.02, T_s = Ts)

# Neutral wind speed profile

u_liz <- wind_speed_profile_neutral(u_r = u, zr = 2, z0 = 0.2,
z = 0.02)

Energy balance

Finally, we will use our microclimates estimates to solve the following energy balance to esti-

mate Te:

Qnet ¼ Qabs � Qemit � Qconv � Qcond � Qmet � Qevap;

where Qnet is the net energy exchange with the environment (W), Qabs is the solar radiation

absorbed (W), Qemit is the net thermal radiation emitted (W), Qconv is energy exchange due to

convection (W), Qcond is energy exchange due to conduction (W), Qmet is the energy generated

by metabolism (W), and Qevap is the energy generated by evaporative water loss (W). We will

estimate each term on the right side of the equation in turn. Estimating Qabs requires the sur-

face area exposed to radiation and the solar absorptivity of the animal surface (a proportion).

We use zenith angle psi to estimate the projected (silhouette) area as a portion of the surface

area of the organism, which allows estimating absorbed solar radiation. We model a 10 gram

Sceloporus lizard with solar absorptivity a = 0.9 [13]. We will initially assume Tb = Ta + 10 to

illustrate the calculations before solving for Tb given the environmental conditions.

mass <- 10 # Mass (g)

svl <- 0.006 # Snout vent length (meters)

a <- 0.9 # Solar absorptivity (proportion)

#assume 1/3 of surface area is in contact with surface
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psa_g <- 0.33

# Estimate surface area (m^2) and the proportion sihouette area

A <- surface_area_from_mass(mass, "lizard")

psa <- sapply(psi_deg, proportion_silhouette_area, taxon =
"lizard", posture = "prostrate")

# Change negative values to zero

psa[psa < 0] = 0

We calculate the hourly solar and thermal radiation absorbed (W) as follows:

Qabs <- rep(NA, 24)

for (hour in 1:24) {

Qabs[hour] <- Qradiation_absorbed(a = a, A = A, psa_dir = psa
[hour], psa_dif = 0.5, psa_ref = 0.5, S_dir = Sdir[hour], S_
dif = Sdif[hour], rho = rho)

}

We estimate thermal radiation Qemit (W) for the lizard outdoors, where psadir and psaref are

the view factors, also refered to as configuration factors, that indicate the proportions of sur-

face area A (m2) exposed to the sky and ground, respectively. We assume the surface emissivity

of lizards, epsilons = 0.965 [30].

epsilon_s <- 0.965 # Surface emissivity of lizards

Qemit <- rep(NA, 24)

for (hour in 1:24) {

Qemit[hour] <- Qemitted_thermal_radiation(epsilon = epsilon_s,
A = A, psa_dir = 0.5, psa_ref = 0.5, T_b = Ta_liz[hour] + 273.
15, T_g = Ts[hour] + 273.15, T_a = Ta_liz[hour] + 273.15,
enclosed = FALSE)

}

We next estimate convection Qconv (W) and conduction Qcond (W). We will estimate the liz-

ard’s heat transfer coefficient, HL (Wm-2K-1) using an empirical relationship for lizards

(heat_transfer_coefficient()). We average thermal conductivity and kinematic

viscosity across the day for simplicity and since there is not substantial diurnal variation. We

also illustrate a function estimating HL using a spherical approximation (heat_transfer_
coefficient_approximation()) and a simplified approximation (heat_
transfer_coefficient_simple()) for cases when taxon specific relationships for

estimating heat transfer coefficients are not available. We estimate the characteristic dimen-

sion, which determines exposure to convective heat exchange as the cube root of volume,

assuming the animal density approximates that of water [31].
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These coefficients assume convection is forced by the wind. TrenchR includes approaches

for free convection and a function (free_or_forced_convection()) that evaluates

whether free or forced convection is appropriate. The function uses dimensionless numbers,

which have been developed to describe heat transfer coefficients associated with convection

over different geometries and can be estimated using TrenchR (e.g., Grashof, Nusselt, and Rey-

nolds numbers).

# Use DRYAIR from NicheMapR to estimate the thermal conductivity
of air and kinematic viscosity.

ap <- airpressure_from_elev(elev) * 1000 # Barometric pressure
(pascal)

DRYAIRout <- DRYAIR(db = Ta, bp = ap, alt = elev)

K <- mean(DRYAIRout$thcond) # Thermal conductivity (Wm^-2K^-1)

nu <- mean(DRYAIRout$viskin) # Kinematic viscosity (m2 s-1)

# Estimate the characteristic dimension as cube root of volume,
assuming density of water as 1000kg/m^3

D <- ((mass / 1000) / 1000) ^ (1 / 3)

# Estimate the heat transfer coefficient using an empirical
relationship for lizards

H_L <- heat_transfer_coefficient(u = u_liz, D = D, K = K, nu =
nu, taxon = "lizard_surface")

# Estimate the heat transfer coefficient using a spherical
approximation

H_L2 <- heat_transfer_coefficient_approximation(u = u_liz, D =
D, K = K, nu = nu, taxon = "lizard")

# Estimate the heat transfer coefficient using a simplified
version of the approximation

H_L3 <- heat_transfer_coefficient_simple(u = u_liz, D = svl,
type = "Gates")

We estimate convective heat exchange between the animal and surrounding air using the

following relationship:

Qconv ¼ ef � HLðA � proportionÞ Ta � Tbð Þ;

where an enhancement factor, ef, multiplier can be incorporated to account for increases in

heat exchange resulting from air turbulence in field conditions. We implement the function in

R assuming that 2/3 of the lizard’s surface area is exchanging heat through convection.

Qconv <- rep(NA, 24)
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for (hour in 1:24) {

Qconv[hour] <- Qconvection(T_a = Ta_liz[hour] + 273.15, T_b =
Ta_liz[hour] + 10 + 273.15, H = H_L, A = A, proportion = 0.67,
ef = 1.3)

}

We estimate conductive heat flow (W) from the lizard to the surface assuming conductance

through the animal tissue is the rate limiting step as follows:

Qcond ¼ A � proportion � Kskin Tg � Tb

� �
=d

where Kskin in the thermal conductivity of lizard skin (Wm-2K-1). We implement the esti-

mate assuming that conductive heat exchange occurs down to a soil depth of 2.5cm. We use

this value rather than skin thickness, which results in rapid conduction and does not readily

reach steady state conditions.

Qcond <- rep(NA, 24)

for(hr in 1:24) {

Qcond[hr] <- Qconduction_animal(T_g = Ts[hr] + 273.15, T_b =
Ta_liz[hr] + 10 + 273.15, d = 0.025, K = 0.5, A = A,
proportion = psa_g)

}

We assume, as is generally done for lizards, that heat exchange associated with metabolism

and evaporation is negligible. However, functions for estimating both forms of heat exchange

available in TrenchR.

Qmet <- 0

Qevap <- 0

The full heat budget can be calculated as follows [13]:

Qnet <- Qnet_Gates(Qabs = Qabs, Qemit = Qemit, Qconv = Qconv,
Qcond = Qcond, Qmet = Qmet, Qevap = Qevap)

We now use a function based on the Gates energy balance above to estimate body tempera-

ture given the environmental conditions:

Te <- rep(NA, 24)

for (hour in 1:24) {

Te[hour] <- Tb_Gates(A = A, D = svl, psa_dir = psa[hour], psa_
ref = 1—psa[hour], psa_air = 0.67, psa_g = 0.25, T_g = Ts
[hour], T_a = Ta_liz[hour], Qabs = Qabs[hour], epsilon =
epsilon_s, H_L = H_L, ef = 1.3, K = K)

}
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We also implement a similar but simplified energy balance [14]. The energy balance omits

conduction with the ground:

Te2 <- rep(NA, 24)

for (hr in 1:24) {

# S is solar radiation flux (W m^-2), so we divide by surface
area, A

Te2[hr] <- Tb_CampbellNorman(T_a = Ta_liz[hr], T_g = Ts[hr],
S = Qabs[hr] / A, a_l = 0.96, epsilon = epsilon_s, c_p = 29.3,
D = D, u = u_liz)

}

We additionally estimate Tb using a specialized function for lizards [32], where Fd, Fr, Fa,
and Fg are the view factors between the surface of the lizard and diffuse solar radiation,

reflected solar radiation, atmospheric thermal radiation, and ground thermal radiation,

respectively:

Te3 <- rep(NA, 24)

for (hour in 1:24) {

Te3[hour] <- Tb_lizard(T_a = Ta_liz[hour], T_g = Ts[hour], u =
u_liz, svl = svl * 1000, m = mass, psi = psi_deg[hour], rho_
s = rho, elev = elev, doy = doy, sun = TRUE, surface = TRUE, a_
s = a, a_l = 0.965, epsilon_s = epsilon_s, F_d = 0.8, F_r = 0.
5, F_a = 0.5, F_g = 0.5)

}

The microclimate models indicate that air temperatures at lizard height are similar to sur-

face temperatures (Fig 3). The biophysical models indicate that solar radiation can elevate liz-

ard body temperatures far above air temperatures and that the lizard will face thermal stress if

it is unable to seek shade (Fig 3). The three biophysical models predict different body tempera-

tures during peak period of solar radiation because they model interactions with the ground

differently and users are encouraged to review the details of each biophysical model and per-

form empirical validations before selection. Differences in estimated body temperatures are

accentuated by the high level of solar radiation. Tb_Gates is a general and comprehensive

model that is appropriate for many applications. Taxa-specific biophysical models often best

account for details of organism environment interactions and have generally been well tested.

Discussion

TrenchR is intended to promote understanding of how organisms interact with their environ-

ment and consequences for physiology, energetics, behavior, and demography. Our example

implementation highlights the importance of considering organismal body temperatures,

rather than air temperatures, when examining thermal stress and other responses to environ-

mental variability and change. TrenchR currently focuses on heat balances but may be

expanded to include water balances. Simple functions can be combined as needed to produce

comprehensive and transparent models for biophysical ecology and evolution. The resultant
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models are likely to be sufficiently detailed for many applications, but users are referred to

NicheMapR for more detailed biophysical models [18, 20]. We focus on models that predict

steady-state conditions for simplicity (that is, steady-state conditions). Such models generally

do not present computational challenges so our models are not optimized for computational

efficiency. Making classic biophysical ecology techniques more accessible will allow research-

ers to take advantage of rapidly accumulating data on environmental conditions and organis-

mal traits to understand and predict ecological and evolutionary responses. Considering how

organisms experience their environment is central to understanding responses to variable and

changing environments [33].

Supporting information

S1 Text. We compare TrenchR and NicheMapR implementations. We thank Michael Kear-

ney for making modular R functions corresponding to NicheMapR available and providing

code comparing TrenchR and NicheMapR functions during the review process. Our adapta-

tion of the provided code corresponds to the operative temperature estimation in the

Fig 3. Body temperatures (Te) are predicted to drastically exceed air temperature when lizards are exposed to high levels of solar radiation. Air temperatures

(Ta, ˚C) at lizard height (0.02 m) are predicted to exceed air temperatures at 2 m and to be similar to surface temperatures (Ts). We estimate body temperatures

using two general energy budgets [solid: Tb_Gates(); dotted: Tb_CampbellNorman()] and a lizard specific biophysical model [dashed: Tb_lizard()] that differ in

how they model heat exchanges.

https://doi.org/10.1371/journal.pclm.0000139.g003
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manuscript. The NicheMapR implementation relies on the micro_global environmental data

available through NicheMapR. The modular NicheMapR functions are available in version

3.2.1 via GitHub (https://github.com/mrke/NicheMapR/releases).

(DOCX)

S2 Text. We provide an additional example using microclimate data measured along an

elevation gradient in CO, USA to illustrate use of TrenchR. We first use a time series of air

temperatures and wind speeds collected at multiple heights to examine profiles and surface

roughness. We then use a time series of air and surface temperatures, wind speeds, and solar

radiation collected at a single height to implement a biophysical model for grasshoppers and

compare estimates to observations. We omit the code to read and process the environmental

data here for brevity. R markdown files with the full code and the associated environmental

data are available at https://github.com/trenchproject/TrenchRmanuscript/.

(DOCX)
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